Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Mei-Mei Wu, Li-Yi Zhang, Yong-Hai Qin and Zhong-Ning Chen*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail: czn@ms.fjirsm.ac.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.011 \AA$
R factor $=0.068$
$w R$ factor $=0.169$
Data-to-parameter ratio $=14.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

Bis[μ-bis(diphenylphosphino)methane$\kappa^{2} P: P^{\prime}$]bis[diacetonitrilecopper(I)] bis(hexafluorophosphate)

The title compound, $\left[\mathrm{Cu}_{2}\left(\mu_{2} \text {-dppm }\right)_{2}(\mathrm{MeCN})_{4}\right]\left(\mathrm{PF}_{6}\right)_{2}$ or $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{P}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)_{4}\right]\left(\mathrm{PF}_{6}\right)_{2}$, crystallizes in the monoclinic space group $C 2 / c$, with the cation on a twofold axis. The Cu centers are four-coordinated, exhibiting pseudo-tetrahedral coordination.

Comment

The diphosphine bis(diphenylphosphino)methane (dppm) is widely used to design coinage metal complexes owing to its good bridging properties (Diez et al., 1987). The binuclear compounds $\left[M_{2}\left(\mu_{2} \text {-dppm }\right)_{2}\right]$ usually display eight-membered rings (Yang et al., 1997), as in $\left[\mathrm{Au}_{2}\left(\mu_{2}-\mathrm{dppm}\right)_{2}\right][\mathrm{Au}-$ $\left.\left(\mathrm{GeCl}_{3}\right)_{2}\right]_{2}$ (Bauer \& Schmidbaur, 1997), $\quad\left[\mathrm{Ag}_{2}\left(\mu_{2^{-}}\right.\right.$ dppm $\left.)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \quad\left(\right.$ Ahrens \& Jones, 1998) and $\left[\mathrm{Cu}_{2}\left(\mu_{2^{-}}\right.\right.$ $\left.\mathrm{dppm})_{2}(\mathrm{MeCN})_{4}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ (Diez et al., 1987). This paper describes the crystal structure of a copper-based system, (I), with $\mathrm{PF}_{6}{ }^{-}$as the anion.

The complex consists of the dication $\left[\mathrm{Cu}_{2}\left(\mu_{2^{-}}\right.\right.$ dppm $\left.)_{2}(\mathrm{MeCN})_{4}\right]^{2+}$, situated on a twofold axis, and two $\mathrm{PF}_{6}{ }^{-}$ anions. A perspective drawing of the complex with the atomic numbering scheme is depicted in Fig. 1. Selected bond lengths and angles are presented in Table 1. The two Cu atoms are doubly bridged by dppm ligands to give an eight-membered ring, $\left[\mathrm{Cu}_{2}\left(\mu_{2}-\mathrm{dppm}\right)_{2}\right]$. The Cu centers adopt a distorted tetrahedral geometry in which the four coordination sites around the copper are occupied by two P atoms of dppm and two N atoms from acetonitrile. The $\mathrm{Cu} \cdots \mathrm{Cu}$ distance of $3.756(1) \AA$ is longer than that in $\left[\mathrm{Cu}_{2}\left(\mu_{2} \text { - } \mathrm{dppm}\right)_{2^{-}}\right.$ $\left.(\mathrm{MeCN})_{4}\right]\left(\mathrm{ClO}_{4}\right)_{2}, 3.426$ (3) \AA; this may be due to the $\mathrm{Cu}-$ anion interaction. The $\mathrm{Cu}-\mathrm{P}$ distances are 2.2730 (14) and 2.2859 (15) \AA, which are close to those in the abovementioned compound. The acetonitrile ligands, on the other hand, are quite different, with one being nearly linear [C1$\left.\mathrm{N} 1-\mathrm{Cu} 1=171.8(6)^{\circ}\right]$ and the other bent $[\mathrm{C} 3-\mathrm{N} 2-\mathrm{Cu} 1=$ 157.5 (6) ${ }^{\circ}$). The corresponding $\mathrm{Cu}-\mathrm{N}$ bond lengths are also different, with $\mathrm{N} 1-\mathrm{Cu} 1[2.031$ (5) \AA] being shorter than $\mathrm{N} 2-$ $\mathrm{Cu} 1[2.172$ (5) \AA].

Received 4 March 2003
Accepted 18 March 2003 Online 31 March 2003

Experimental

A mixture of $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right]\left(\mathrm{PF}_{6}\right)_{2}($ Shriver, 1979) and dppm in a $1: 1$ ratio in dichloromethane was stirred under an inert atmosphere at room temperature overnight. Concentration of the solution and addition of diethyl ether resulted in the precipitation of an off-white solid. Well shaped colorless crystals suitable for X-ray diffraction measurement were grown by slow diffusion of diethyl ether into an acetonitrile solution at room temperature.

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{P}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)_{4}\right]\left(\mathrm{PF}_{6}\right)_{2}$
$M_{r}=1349.97$
Monoclinic, C2/c
$a=22.5125$ (3) Å
$b=13.1916$ (2) A
$c=21.6096$ (3) \AA
$\beta=108.748$ (1) ${ }^{\circ}$
$V=6077.02(15) \AA^{3}$
$Z=4$

$$
D_{x}=1.476 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 4793 reflections
$\theta=1.8-25.0^{\circ}$
$\mu=0.94 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colorless
$0.60 \times 0.56 \times 0.56 \mathrm{~mm}$

Data collection

Siemens SMART 1K CCD

 diffractometerω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min }=0.561, T_{\max }=0.592$
8897 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.068$
$w R\left(F^{2}\right)=0.169$
$S=1.23$
5273 reflections
368 parameters
H -atom parameters constrained

5273 independent reflections 4180 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-26 \rightarrow 23$
$k=-15 \rightarrow 13$
$l=-10 \rightarrow 25$

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0384 P)^{2}\right.} \\
&+40.8701 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.55 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.66 \mathrm{e}^{-3} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right.$).

$\mathrm{Cu} 1-\mathrm{N} 1$	$2.031(5)$	$\mathrm{Cu} 1-\mathrm{P} 1$	$2.2730(14)$
$\mathrm{Cu} 1-\mathrm{N} 2$	$2.172(6)$	$\mathrm{Cu} 1-\mathrm{P} 2$	$2.2859(15)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$95.6(2)$	$\mathrm{C} 121-\mathrm{P} 1-\mathrm{Cu} 1$	$109.52(17)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{P} 1$	$117.74(14)$	$\mathrm{C} 01^{\mathrm{i}}-\mathrm{P} 1-\mathrm{Cu} 1$	$116.46(18)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{P} 1$	$101.79(14)$	$\mathrm{C} 211-\mathrm{P} 2-\mathrm{Cu} 1$	$116.35(19)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{P} 2$	$117.24(15)$	$\mathrm{C} 01-\mathrm{P} 2-\mathrm{Cu} 1$	$120.26(17)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{P} 2$	$95.01(15)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cu} 1$	$171.8(6)$
$\mathrm{P} 1-\mathrm{Cu} 1-\mathrm{P} 2$	$119.99(6)$	$\mathrm{C} 3-\mathrm{N} 2-\mathrm{Cu} 1$	$157.5(6)$

Symmetry code: (i) $1-x, y, \frac{3}{2}-z$.

Figure 1
A view of the title complex, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms have been omitted. Only key atoms are labeled, and the suffix A corresponds to symmetry code (i) in Table 1

The H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.96 \AA$), assigned isotropic displacement parameters and allowed to ride on their respective parent C atoms.

Data collection: SMART (Siemens, 1996); cell refinement: SMART and SAINT (Siemens, 1994); data reduction: SAINT and XPREP in SHELXTL (Siemens, 1994); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the NSF of China (No. 20171044).

References

Ahrens, B. \& Jones, P. G. (1998). Acta Cryst. C54, 16-18.
Bauer, A. \& Schmidbaur, H. (1997). J. Chem. Soc. Dalton Trans. pp. 11151116.

Diez, J., Gamasa, M. P., GimeNo. J., Tiripicchio. A. \& Camellini, M. T. (1987). J. Chem. Soc. Dalton Trans. pp. 1275-1278.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Shriver, D. F. (1979). Inorg. Synth. p. 90.
Siemens (1994). SAINT and SHELXTL. Versions 5. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Yang, R., Lin, K., Hou, Y., Wang, D., Jin, D., Luo, B. \& Chen, L. (1997). Transition Met. Chem. pp. 254-258.

[^0]: (C) 2003 International Union of Crystallography

